

MCTS 70-433

Microsoft SQL Server 2008

Database Development

Reference by Simon Flüeli

Simon Flüeli

Seite 2 von 54

Inhaltsverzeichnis

1 Chapter 1 Data Retrieval ... 6

2 Chapter2 Modifying Data – The Insert, Update, Delete and Merge Statements 7

2.1 Lesson 1: Modifying data by using INSERT, UPDATE, and DELETE Statements 7

2.1.1 Keywords ... 7

2.1.2 Hints ... 7

2.1.3 Exam objectives in this Chapter .. 7

2.1.4 Inserting Data .. 7

2.1.5 Updating data .. 8

2.1.6 Deleting Data ... 9

2.1.7 The TRUNCATE TABLE statement .. 9

2.1.8 Lesson Summary .. 10

2.2 Lesson 2: Enhancing DML functionality with the OUTPUT clause and MERGE statements . 10

2.2.1 Using the OUTPUT clause .. 10

2.2.2 Using the MERGE statement ... 12

2.2.3 MERGE statement samples ... 13

2.3 Lesson 3: Managing Transactions .. 14

2.3.1 Definition ... 14

2.3.2 Defining explicit transactions .. 14

2.3.3 Understanding locking ... 15

2.3.4 Deadlocks .. 15

2.3.5 Understanding reports on lock status ... 16

2.3.6 Using DBCC Log .. 17

2.3.7 Setting transaction isolation levels .. 17

2.3.8 Summary .. 18

2.4 Chapter summary .. 19

3 Chapter 3 Tables, data types, and declarative data integrity... 20

3.1 Lesson 1: Working with tables and data types .. 20

3.1.1 Data Types ... 20

3.1.2 String data types .. 20

3.1.3 Exact numeric types .. 20

3.1.4 Decimal storage requirements .. 20

3.1.5 Handling date and time ... 21

3.1.6 Table basics ... 21

Simon Flüeli

Seite 3 von 54

3.1.7 Creating a table ... 22

3.1.8 Table and column Names (Identifiers) .. 22

3.1.9 Choosing data types .. 23

3.1.10 Identity .. 23

3.1.11 Compression .. 24

3.1.12 Lesson summary .. 24

3.2 Lesson 2: Declarative Data Ingegrity ... 25

3.2.1 Validating Data .. 25

3.2.2 Implementing declarative data integrity ... 25

3.2.3 Extending check constraints with User-Defined Functions ... 26

3.3 Chapter Summary .. 26

4 Chapter 4 Using additional query techniques ... 27

4.1 Lesson 1: Building recursive queries with CTEs .. 27

4.1.1 Common Table Expressions ... 27

4.1.2 Caution: Recursion Levels .. 29

4.1.3 Quick Check ... 29

4.1.4 Lesson Summary .. 29

4.2 Lesson 2: Implementing subqueries .. 29

4.2.1 Noncorrelated Subqueries .. 29

4.2.2 Correlated subqueries ... 30

4.2.3 Quick Check ... 30

4.2.4 Lesson summary .. 30

4.3 Lesson 3: Applying ranking functions .. 31

4.3.1 Ranking Data .. 31

4.3.2 Quick Check ... 32

4.3.3 Lesson summary .. 32

4.4 Chapter summary .. 32

5 Chapter 5 Programming Microsoft SQL Server with T-SQL ... 33

User-Defined Stored Procedures, Functions, Triggers, and Views .. 33

5.1 Lesson 1 Stored procedures .. 33

5.1.1 Creating stored procedures ... 33

5.1.2 Variables, Parameters, and Return Codes ... 34

5.1.3 Controls flow constructs .. 34

5.1.4 Error Messages .. 34

5.1.5 Error Handling ... 35

Simon Flüeli

Seite 4 von 54

5.1.6 Cursors ... 36

5.1.7 Quick Check ... 37

5.1.8 Lesson summary .. 38

5.2 Lesson 2: User-Defined Functions ... 38

5.2.1 System functions ... 38

5.2.2 User-defined functions .. 38

5.2.3 Schemabinding .. 39

5.2.4 Retrieving data from a function .. 39

5.2.5 Quick Check ... 39

5.2.6 Lesson summary .. 41

5.3 Lesson 3: Triggers .. 41

5.3.1 DML Triggers .. 41

5.3.2 DDL Triggers ... 41

5.3.3 Logon Triggers ... 43

5.3.4 Lesson summary .. 43

5.4 Lesson 4 Views ... 44

5.4.1 Creating a view .. 44

5.4.2 Modifying data through a view ... 44

5.4.3 Partitioned Views .. 44

5.4.4 Creating an Indexed View .. 45

5.4.5 Determinism .. 45

5.4.6 Query substitution ... 45

5.4.7 Quick check .. 45

5.4.8 Lesson summary .. 46

5.5 Chapter Summary .. 46

6 Chapter 6 Techniques to Improve Query Performance .. 47

6.1 Lesson 1 Tuning Queries .. 47

6.1.1 Evaluating Query Performance ... 47

6.1.2 Tuning Query Performance ... 48

6.1.3 The Graphical execution Plan .. 49

6.1.4 Using Search Arguments ... 49

6.1.5 Lesson Summary .. 49

6.2 Lesson 2: Creating Indexes .. 50

6.2.1 Improving performance with covered indexes ... 50

6.2.2 Using included columns and reducing index depth .. 50

Simon Flüeli

Seite 5 von 54

6.2.3 Using clustered indexes ... 50

6.2.4 Read performance vs. Write performance .. 51

6.2.5 Using indexed views .. 51

6.2.6 Partitioning .. 51

6.2.7 Tuning indexes automatically .. 53

6.2.8 Lesson summary .. 53

6.3 Chapter summary .. 53

7 Chapter 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream 54

7.1 Lesson 1 Working with XML .. 54

7.2 Retrieving tabular data as XML ... 54

7.3 FOR XML RAW ... 54

Simon Flüeli

Seite 6 von 54

1 Chapter 1 Data Retrieval
TODO

Simon Flüeli

Seite 7 von 54

2 Chapter2 Modifying Data – The Insert, Update, Delete and Merge

Statements

2.1 Lesson 1: Modifying data by using INSERT, UPDATE, and DELETE Statements

2.1.1 Keywords

Keyword Explanation

DML Data Manipulation Language

Merge Enhance the ability to perform INSERT, UPDATE and DELETE
statements on a table based on the results of a query

Transaction Transactions are key to providing a consistent reliable view of the data
to all users at all time

Insert Use the INSERT statement to add new rows to a table

Update Use the UPDATE statement to modify rows in a table

Delete Use the DELETE statement to remove rows from a table

2.1.2 Hints

Hint Explanation

SET IDENTITY_INSERT ON Overcome the limitation of an identity column when executing an
insert or update statement

2.1.3 Exam objectives in this Chapter

- Modify data by using INSERT, UPDATE and DELETE statements
- Return data by using the OUTPUT clause
- Modify data by using MERGE statements
- Manage transactions

2.1.4 Inserting Data

Goal: Insert new rows to a database

Syntax

[WITH <common_table_expression> [, ...n]]

INSERT

 [TOP(expression) [PERCENT]]

 [INTO]

 { <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

{

 [(column_list)]

 [<OUTPUT Clause>]

 {VALUES({DEFAULT | NULL | expression} [,...n])[,...n]

 | derived_table

 | execute_statement

 | <dml_table_source>

 | DEFAULT VALUES

 }

}

[;]

Simon Flüeli

Seite 8 von 54

- Include data for all columns or a partial list of columns
- When inserting data for all columns, it’s not necessary to specify the column names
- Insert rows based on data selected from a different table by using the INSERT…SELECT statement

2.1.5 Updating data

Goal: Update rows in a database

Syntax

[WITH <common_table_expression> [, ...n]]

UPDATE

 [TOP(expression) [PERCENT]]

 { <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

SET

 { column_name = {expression | DEFAULT | NULL}

 | {udt_column_name.{{property_name = expression

 | field_name = expression}

 | method_name (argument

[,...n])

 }

 }

 | column_name {.WRITE(expression, @Offset, @Length)}

 | @variable = expression

 | @variable = column = expression

 | column_name {+= | -= | *= | /= | %= | &= | ^= | |=}

expression

 | @variable {+= | -= | *= | /= | %= | &= | ^= | |=}

expression

 | @variable = column {+= | -= | *= | /= | %= | &= | ^= | |=}

expression

 } [,...n]

 [<OUTPUT Clause>]

 [FROM{<table_source>}[,...n]]

 [WHERE {<search_condition>

 | {[CURRENT OF

 {{[GLOBAL] cursor_name}

 | cursor_variable_name

 }

]

 }

 }

]

 [OPTION(<query_hint> [,...n])]

[;]

Best Practices
Build the logic of an UPDATE or DELETE statement as a SELECT statement and verify its logic before
modifying it to run as an UPDATE or DELETE statement.

Simon Flüeli

Seite 9 von 54

2.1.6 Deleting Data

Goal: Removing rows from a database

Syntax

- The DELETE command can remove rows in one table base on information returned from a joined
table.

2.1.7 The TRUNCATE TABLE statement

Like a DELETE statement without a WHERE clause, the TRUNCATE TABLE statement can also be used
to remove all data from a table.

Differences
- The DELETE statement logs information on each row deleted, while the TRUNCATE TABLE statement
only creates entries for the deallocation of the data pages
- The TRUNCATE STATEMENT executes more quickly and requires fewer resources because of the
minimal logging
- If an identity column exists in the table, the TRUNCATE TABLE command resets the identity seed
value

Syntax

Neither the DELETE statement without a WHERE clause nor the TRUNCATE TABLE statement affect
the schema structure of the table or related objects.

[WITH <common_table_expression> [,...n]]

DELETE

 [TOP (expression) [PERCENT]]

 [FROM]

 {<object> | rowset_function_limited

 [WITH (<table_hint_limited> [...n])]

 }

 [<OUTPUT Clause>]

 [FROM <table_sources>[,...n]]

 [WHERE {<search_condition>

 | {[CURRENT OF

 {{[GLOBAL] cursor_name}

 | cursor_variable_name

 }

]

 }

 }

]

 [OPTION(<Query Hint>[,...n])]

[;]

TRUNCATE TABLE <tablename>

Simon Flüeli

Seite 10 von 54

2.1.8 Lesson Summary

- The INSERT statement allows you to add new rows to a table
- The UPDATE statement allows you to make changes to the existing data in a table
It allows you not only to modify the value in a column, it also allows you to add or remove a value
from a single column in the table without affecting the rest of the row being modified
- The DELETE statement allows you to remove one or more rows from a table

2.2 Lesson 2: Enhancing DML functionality with the OUTPUT clause and MERGE

statements

You can use the OUTPUT clause and MERGE statement to enhance the functionality provided by DML
statements.

The OUTPUT clause allows you to return information from rows affected by an INSERT, UPDATE or
DELETE statement.

The MERGE statement provides you with the ability to perform an INSERT, UPDATE or DELETE
operation on a target table based on a set of rules that are determined by a row comparison
between the target table and a source table.

2.2.1 Using the OUTPUT clause

Keywords

Keyword Explanation

OUTPUT The OUTPUT clause gives you the ability to access the inserted and
deleted tables that in versions previous to SQL Server 2005 were
accessible only through triggers

 Functionality that was previously performed through triggers can

be handled by stored procedures instead

Syntax

<OUTPUT_CLAUSE> ::=

{

 [OUTPUT <dml_select_list> INTO {@table_variable | output_variable}

[(column_list)]]

 [OUTPUT <dml_select_list>]

}

<dml_select_list> ::=

{<column_name | scalar_expression}[[AS] column_alias_identifier]

 [,...n]

<column_name> ::=

{DELETED | INSERTED | from_table_name}.{* | column_name}

 | $action

Simon Flüeli

Seite 11 von 54

OUTPUT clause samples

Additional Infos:

Archive:

USE Northwind

CREATE TABLE Audit

(AuditID int Primary Key IDENTITY

 , InsertedDate DateTime2 DEFAULT getdate()

 , InsertedID int);

DECLARE @InsertedID int ;

INSERT INTO Employees

(LastName, FirstName, Title)

OUTPUT getdate(), inserted.EmployeeID INTO Audit

VALUES ('Ralls', 'Kim', 'Support Rep');

SELECT * from Audit;

SELECT * FROM Employees;

DELETE FROM [Order Details]

OUTPUT deleted.* INTO OrderDetailsArchive

FROM Orders

INNER JOIN [Order Details]

 ON Orders.OrderID = [Order Details].OrderID

WHERE OrderDate < '12-01-1997'

Simon Flüeli

Seite 12 von 54

2.2.2 Using the MERGE statement

Keywords

Keyword Explanation

CDC Change data capture

The MERGE statement, along with CDC, which were both introduces in SQL Server 2008, greatly
enhance the functionality for data warehouses and staging databases.

The MERGE statement gives you the ability to compare rows in a source and destination table.

Syntax

[WITH <common_table_expression> [,...n]]

MERGE

 [TOP(expression)[PERCENT]]

 [INTO] target_table [WITH (<merge_hint>)][[AS] table_alias]

 USING <table_source>

 ON <merge_search_condition>

 [WHEN MATCHED [AND <clause_search_condition>]

 THEN <merge_matched>]

 [WHEN NOT MATCHED [BY TARGET] [AND <clause_search_condition>]

 THEN <merge_not_matched>]

 [WHEN NOT MATCHED BY SOURCE [AND <clause_search_condition>]

 THEN <merge_matched>]

 [<output_clause>]

 [OPTION(<query_hint> [,...n])]

Simon Flüeli

Seite 13 von 54

2.2.3 MERGE statement samples

Move data from one table to another

MERGE INTO Sales.SalesOrderDetailHistory AS SODH

 USING Sales.SalesOrderDetail AS SOD

 ON SODH.salesorderid = SOD.salesorderid

 AND SODH.SalesOrderDetailID = SOD.SalesOrderDetailID

 WHEN NOT MATCHED BY TARGET THEN

INSERT (Linetotal, SalesOrderID, SalesOrderDetailID,

CarrierTrackingNumber, OrderQty,

ProductID, SpecialOfferID, UnitPrice,

UnitPriceDiscount, rowguid,

 ModifiedDate, Cancelled)

VALUES(Linetotal, SalesOrderID, SalesOrderDetailID,

CarrierTrackingNumber, OrderQty,

ProductID, SpecialOfferID, UnitPrice,

UnitPriceDiscount, rowguid,

 ModifiedDate, DEFAULT)

 WHEN NOT MATCHED BY SOURCE THEN

 UPDATE SET SODH.Cancelled = 'True'

Simon Flüeli

Seite 14 von 54

2.3 Lesson 3: Managing Transactions

2.3.1 Definition

Transactions are frequently defined as a set of actions that succeed or fail as a whole.

Four major functions

Keyword Description

Atomicity When two or more pieces of information are involved in a transaction,
either all the pieces are committed or none of them are committed.

Consistency At the end of a transaction, either a new and valid form of the data
exists or the data is returned to its original state. Returning data to its
original state is part of the rollback functionality provided by SQL Server
transactions.

Isolation During a transaction (before it is committed or rolled back), the data
must remain in an isolated state and not be accessible to other
transactions. In SQL Server, the isolation level can be controlled for
each transaction.

Durability After a transaction is committed, the final state of the data is still
available even if the server fails or is restarted. This functionality is
provided through checkpoints and the database recovery process
performed at startup in SQL Server.

Implicit transactions
A transaction starts automatically when any of the following commands are executed:
ALTER TABLE, CREATE, DELETE, DENY, DROP, FETCH, GRANT, INSERT, OPEN, REVOKE, SELECT,
TRUNCATE TABLE, or UPDATE.

The transaction is active until you manually issue a COMMIT or ROLLBACK statement.

Enable implicit transactions: SET IMPLICIT_TRANSACTIONS ON

2.3.2 Defining explicit transactions

- Typically defined within stored procedures
- Started when a BEGIN TRANSACTION statement is executed
- Completed by issuing either a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement

Note
Although the ROLLBACK Statement returns the data to its prior state, some functionalities, such as
seed values for identity columns, are not reset.

When transactions are nested (verschachtelt) a ROLLBACK statement rolls back to the outermost
nested transactions.
If you want to roll back only a portion of a transaction, you can define savepoints by using the SAVE
TRANSACTION savepoint_name Statement and then referencing the savepoint name in the
ROLLBACK Statement. By doing this, you are telling the Database Engine to roll back data changes
only to the point where you issued the SAVE TRANSACTION statement with the same name.

Simon Flüeli

Seite 15 von 54

2.3.3 Understanding locking

- Locks are used to prevent problems caused by multiple users accessing the same data at the same
time or that a certain level of temporary inconsistency is acceptable for concurrent reads during an
update, and no read locks are issued so that better concurrency and faster performance can be
achieved

Locking modes

Keyword Description

Shared (S) Placed on resources for read (SELECT) operations. Shared locks are
compatible with other shared locks. Shared locks are not
compatible with exclusive locks. When the Isolation level is set to
REPEATABLE READ or higher, or a locking hint is used, the shared
locks are retained for the duration of the transaction. Otherwise,
shared locks are released as soon as the read is completed.

Update (U) Placed on resources where a shared (S) lock is required, but the
need to upgrade to an exclusive (X) lock is anticipated. Only one
transaction at a time can obtain an update lock on a resource.
When modification to the resource is required, the update lock is
upgraded to an exclusive lock.

Exclusive (X) Placed on resources for data modification. An exclusive lock is not
compatible with any other type of lock. Only the NOLOCK hint or
the READ UNCOMMITTED isolation level overrides an exclusive
lock’s functionality.

Intent (IS, IX, SIX) Placed on resources to improve performance and locking efficiency
by placing intent (IS, IX, SIX) locks at a high-level object (such as a
table) before placing shared (S) or exclusive (X) locks at a lower
level (such as the page level).

Schema (Sch-M, Sch-S) Schema modification (Sch-M) locks are placed on objects during
schema modification operations, such as adding a new column to a
table. Schema stability (Sch-S) locks are placed on objects while
queries are being compiled or executed. Sch-M locks block all other
operations until the lock is released. Sch-S locks are not compatible
with Sch-M locks.

Bulk Update (BU) Placed on tables for bulk insert. These locks allow multiple bulk
insert threads to access the table but do not allow other processes
to access the table. These locks are enabled by either using the
TABLOCK hint or by using the sp_tableoption stored procedure to
enable the Table lock on bulk load table option.

Key-range Placed on a range of rows to protect against phantom insertions
and deletions in a record set that is being accessed by a
transaction. These locks are used by transactions using the
SERIALIZABLE transaction isolation level.

2.3.4 Deadlocks

In a deadlock situation, two transactions are holding resources that each of the two transactions
requires before completion.

 Transaction 1 Transaction 2

T1 requires resources of T2

T2 requires resources of T1

Simon Flüeli

Seite 16 von 54

You can use the following best practices to reduce deadlock situations and blocking issues
- Keep transactions short
- Collect and verify input data from users before opening a transaction
- Access resources in the same order whenever possible within transactions
- Keep transactions in a single batch
- Where appropriate, use a lower isolation level or row versioning-based isolation level
- Access the least amount of data possible in the transaction

2.3.5 Understanding reports on lock status

Options for viewing lock status

Option Info

SQL Profiler

System Monitor

sys.dm_tran_locks Provides detailed if normation about each lock that is currently
being held on the instance

Activity Monitor in SSMS

Resources

Keyword Description

Row Identifier (RID) A row identifier used to define a lock on a singele row located in a
heap

KEY The range of keys in an index used to define a lock on key ranges

PAGE An 8-kilobyte (KB) page from tables or indexes

EXTENT A group of eight contiguous pages within a table or index

HoBT A heap or a balanced tree (B-tree) index

TABLE An entire table, made up of both data and index pages

FILE An entire database file

APPLICATION An application-specified resource

METADATA Used for metadata locks

ALLOCATION_UNIT A single allocation unit

DATABASE An entire database, including all data files

Heap: Storage method for a table without a clustered index

Simon Flüeli

Seite 17 von 54

2.3.6 Using DBCC Log

Returns information about the information contained in the current transaction log

Code

Output identifier

Key Description

0 Returns minimal information, including the current Log Sequence Number (LSN),
operation, context, transaction ID and log block generation

1 Returns all the information from the previous level, as well as flags and record
length information

2 Returns all the information from the previous level, as well as the object name,
index name, page ID and slot ID

3 Returns a full set of information about the operation

4 Returns a full set of information about the operation, as well as a hex dump oft
he current transaction log row

2.3.7 Setting transaction isolation levels

Syntax

DBCC LOG(<databasename>, <output identifier>)

SET TRANSACTION ISOLATION LEVEL

 { READ UNCOMMITTED

 | READ COMMITTED

 | REPEATABLE READ

 | SNAPSHOT

 | SERIALIZABLE

 }

[;]

Simon Flüeli

Seite 18 von 54

Isolation Levels

Keyword Description

READ UNCOMMITTED Allows statements to read rows that were updated by a transaction
before the rows are committed to the database. This isolation level
minimizes contention but allows dirty reads and nonrepeatable
(phantom) reads

READ COMMITTED Allows statements within the current connection and transaction to
experience nonrepeatable (phantom) reads but prevents dirty reads
(data updated by another connection’s open transaction). This is the
default setting for SQL Server 2008

REPEATABLE READ Does not allow transactions to read noncommitted modified data (dirty
reads) and ensures that shared locks are maintained until the current
transaction is completed

SNAPSHOT Requires the ALLOW_SNAPSHOT_ISOLATION database option tob e set
to ON. The SNAPSHOT isolation level takes a snapshot of the data at the
time the data is read into the transaction but does not hold locks on the
data. Updates can occur on the data from other transactions, but the
current transaction does not see those updates reflected in subsequent
reads of the original data. If the current transaction modifies data, those
modifications are visible only to the current transaction

SERIALIZABLE Does not allow data to be read that has been modified but not
committed by other transactions. In addition, no other transactions can
update data that has been read by the current transaction until the
current transactions is complete. The SERIALIZABLE isolation level
protects against phantom reads but causes the highest level of blocking
and contention

2.3.8 Summary

- A transaction is a set of actions that make up an atomic unit of work and must succeed or fail as a
whole

- By default, implicit transactions are not enabled. When implicit transactions are enabled, a number
of statements automatically begin a transaction. The developer must execute a COMMIT or
ROLLBACK statement to complete the transaction

- Explicit transactions start with a BEGIN TRANSACTION statement and are completed by either a
ROLLBACK TRANSACTION or COMMIT TRANSACTION statement

- Issuing a ROLLBACK command when transactions are nested rolls back all transactions to the
outermost BEGIN TRANSACTION statement, regardless of previously issued COMMIT statements for
nested transactions

- SQL Server uses a variety of lock modes, including shared (S), exclusive (X), and intent (IS, IX, SIX) to
manage data consistency while multiple transactions are being processed concurrently
- SQL Server 2008 supports the READ UNCOMMITTED, READ COMMITTED, REPEATABLE, READ,
SNAPSHOT, and SERIALIZABLE isolation levels

Simon Flüeli

Seite 19 von 54

2.4 Chapter summary

- DML statements such as INSERT, UPDATE and DELETE allow you to handle the data storage and
retrieval requirements of your organization
- The MERGE statement and OUTPUT clause allow you to handle the data storage and retrieval
requirements of your organization

- The MERGE statement and OUTPUT clause allow you to increase the functionality of you OLTP
database environment as well as data warehouse and reporting environments. These options, in
addition to CDC, provide a means to compare rows and set the UPDATE, INSERT, or DELETE logic
based on those comparisons

- Transactions and locks provide the means by which many users can access and update data
concurrently on a server running SQL Server while receiving a consistent view of the data

Simon Flüeli

Seite 20 von 54

3 Chapter 3 Tables, data types, and declarative data integrity

3.1 Lesson 1: Working with tables and data types

3.1.1 Data Types

- Sql Server system data types
- User-defined types (UDTs) or SQL Common Language Runtime (SQLCLR) types

3.1.2 String data types

Data Type Comments

char fixed length

varchar variable length

nchar fixed length

nvarchar variable length

text deprecated (avoid using it)

ntext deprecated (avoid using it)

3.1.3 Exact numeric types

Data Type Storage size Possible values Comments

tinyint 1 byte 0 to 255 Equal to the byte data type
in most programming
languages, cannot store
negative values

smallint 2 bytes -32768 to 32767 A signed 16-bit integer

int 4 bytes -2’147’483,648 to
2’147’483’647

A signed 32-bit integer

bigint 8 bytes -2E63 to 2E63-1 A signed 64-bit integer

decimal (precision,
scale)

5 to 17 bytes
depending on precision

-10E38 + 1 to
10E38-1

A decimal number containing
up to 38 digits

numeric (precision,
scale)

Functionally equivalent to the decimal data type

The precision defines the total number of digits that the data type holds, supporting a maximum
precision of 38.
The scale defines how many of the digits defined by the precision are used as decimals.

3.1.4 Decimal storage requirements

Precision Storage

1 to 9 5 bytes

10 to 19 9 bytes

20 to 28 13 bytes

29 to 38 17 bytes

Simon Flüeli

Seite 21 von 54

3.1.5 Handling date and time

Data Type Storage size Possible values Comments

datetime 8 bytes January 1, 1753, through
December 31, 9999, with
time accuracy down to
every third millisecond

Mainly available for
backwards compatibility.
Use datetime2, date, time
or datetimeoffset
whenever possible

smalldatetime 4 bytes January 1, 1900, through
June 6, 2079, with time
accuracy down to every
minute

Mainly available for
backwards compatibility.
Use datetime2, date, time
or datetimeoffset
whenever possible

datetime2 (fractional
seconds precision)

Between 6 and 8
bytes

January 1, 0001, through
December 31, 9999, with
time accuracy down to
the specified fractional
seconds precision

Use when both date and
time are required and
time zone offset is not
required

datetimeoffset
(fractional seconds
precision)

Between 8 and
10 bytes

January 1, 0001, through
December 31, 9999, with
time accuracy down to
the specified fractional
seconds precision and
time zone offset between
-14:00 and +14:00

Use when date, time, and
time zone offset are
required

date 3 bytes January1, 0001, through
December 31, 9999

Use when only a date is
required

time (fractional
seconds precision)

Between 3 and 5
bytes

00:00:00 to 23:59:59, with
accuracy down to the
specified fraction of a
second

Use when only a time is
required

3.1.6 Table basics

- Permanent tables
- Local temporary tables
- Global temporary tables
- Table variables

Simon Flüeli

Seite 22 von 54

3.1.7 Creating a table

Before you can create a table, you need a schema in which to create the table.

Example

Syntax of the CREATE TABLE statement

3.1.8 Table and column Names (Identifiers)

Standard identifiers
The first character must be a letter or an underscore (_), not a digit.

Exception
The first character can also be an at sign (@) or a number sign (#), but both of these have special
meanings, as follows:
@ defines a variable or parameter

CREATE SCHEMA Sales

GO

CREATE TABLE Sales.Customers

(

 CustomerId INT NOT NULL,

 Name NVARCHAR(50) NOT NULL

)

CREATE TABLE

 [database_name . [schema_name] . | schema_name .] table_name

 ({<column_definition> | <computed_column_definition>

 | <column_set_definition>}

 [<table_constraint>][,...n])

 [ON {partition_scheme_name(partition_column_name) | filegroup

 | "default" }]

 [{TEXTIMAGE_ON {filegroup | "default"}]

 [WITH (<table_option>[,...n])]

[;]

Simon Flüeli

Seite 23 von 54

Note
@@ doesn’t mean anything other than @, and it should not be used because many system functions
begin with @@

defines a temporary object (that is, the object is available only from the current connection)

defines a global temporary object (that is, the object is available from any connection in the same
instance)

Subsequent characters can include letters, digits, the at sign (@), the dollar sign ($), the number sign
(#), and the underscore (_).

The identifier must not be a T-SQL reserved word.

Embedded spaces or special characters are not allowed.

3.1.9 Choosing data types

- Always use the data type that requires the least amount of disk space
- Do not use a data type if there is a chance that it will not cover your application’s future needs
- Use variable-length data type, such as nvarchar, rather than a fixed-length data type, such as nchar
- Use fixed-length data type if the column’s value is updated frequently
- Avoid using the datetime and smalldatetime data type (use the new date, time, datetime2 data
type)
- Use varchar(max), nvarchar(max) and varbinary(max) instead of text, ntext and image data type
- Use rowversion instead of timestamp
- Only use varchar(max), nvarchar(max), varbinary(max) and xml if a data type with a specified size
cannot be used.
- Use the float or real data types only if the precision provided by decimal is insufficient

3.1.10 Identity

All tables should have one column or a combination of columns that uniquely identifies rows in the
table. This is called the primary key.

Syntax

Seed: Starting point for generating numbers
Increment: Value by which the key is incremented (or decremented, if negative)

Identity columns cannot allow NULL values.

An IDENTITY property can be specified only when creating a new column.
An existing column cannot be modified to use the IDENTITY property.

<column name><data type> IDENTITY(<seed>, <increment>) NOT NULL

Simon Flüeli

Seite 24 von 54

3.1.11 Compression

Data compression is implemented in two levels: row and page.

Configure a table to use page-level compression

If you turn on row-level compression, SQL Server changes the format used to store rows.
In simple terms, this row format converts all data types to variable-length data types.
It also uses no storage space to store NULL values.

Page-level compression includes row-level compression and adds page-level compression using page
dictionary and column prefixing. Page dictionary simply introduces pointers between rows in the
same page to avoid storing redundant data.

Example:

Row 01: John Kane
Row 02: John Woods
Row 03: John Kane

If this page used page dictionary, it would look like this:

Row 01: John Kane
Row 02: John Woods
Row 03: 01

3.1.12 Lesson summary

Creating tables is about defining columns, choose the right data type and to implement data
integrity.

Data integrity needs to be a part of your table definition from the beginning to make sure that you
protect your data from faults.

ALTER TABLE HR.Employees

 REBUILD

 WITH(DATA_COMPRESSION = PAGE)

Simon Flüeli

Seite 25 von 54

3.2 Lesson 2: Declarative Data Ingegrity

3.2.1 Validating Data

Two ways to validate data integrity
 - declarative data integrity (set of rules on a table (also called: constraints)
 - procedural data integrity (let procedure / trigger validate data)

Note
Don’t use roles because they’ll be removed from SQL Server in a future release

3.2.2 Implementing declarative data integrity

- Implemented by using constraints

Constraint types

Name Description

Primary key Identify a column or combination of columns that
uniquely identifies a row in a table

Unique Identify a column or combination of columns that
uniquely identifies a row in a table

Foreign key Identify a column or combination of columns
whose values must exists in another column *…+
in the same table or another table
- Usually greatly benefits from being indexed

Check Set of rules that must be validated prior to data
being allowed into a table

Advantages
- Simple to implement (similar to a WHERE
clause)
- Checked automatically
- Improve performance

Example (Product must have a non-negative
price):
ALTER TABLE Products
 ADD CHECK(Price >= 0.0)

Disadvantages
- Error messages cannot be replaced by more
user-friendly error messages
- A check constraint cannot “see” the previous
value of a column

Default Defines the default value for a column if no data
is provided

Simon Flüeli

Seite 26 von 54

3.2.3 Extending check constraints with User-Defined Functions

The expression in a check constraint can contain most of the logic that you can use in a WHERE
clause (including NOT, AND, and OR). It can call scalar UDFs but it is not allowed to contain
subqueries directly.

3.3 Chapter Summary

- Always consider which data types you are using because changing your mind later can be more
difficult than you think
- Consider using user-defined data types to simplify selecting the correct data type when creating
tables and to avoid data type mismatches in your database
- Having appropriate names, as defined in a naming guidelines document for objects and columns, is
very important to make sure that the naming in your database is consistent
- consider compressing large tables to save disk space and memory, as well as possibly increasing
performance
- Implement constraints to verify data integrity
- Implement constraints to support the optimizer
- Consider using UDFs in check constraints to implement advanced data integrity

Simon Flüeli

Seite 27 von 54

4 Chapter 4 Using additional query techniques

4.1 Lesson 1: Building recursive queries with CTEs

CTEs (Common table expressions) allow you to iterate across a result set to solve one of the more
difficult challenges within TSQL, efficiently executing a recursive query.

4.1.1 Common Table Expressions

A CTE is defined with two parts
- A WITH clause containing a SELECT statement that generates a valid table
- An outer SELECT statement that references the table expression

Example

WITH EmpTitle AS

(SELECT JobTitle, COUNT(*) AS numtitles

 FROM HumanResources.Employee

 GROUP BY JobTitle)

SELECT b.BusinessEntityID, b.JobTitle, a.numtitles

FROM EmpTitle AS a

INNER JOIN HumanResources.Employee AS b

 ON a.JobTitle = b.JobTitle

Simon Flüeli

Seite 28 von 54

A recursive CTE expands the definition of the table expression and consists of two parts
- An anchor query, which is the source of the recursion, along with a UNION ALL statement and a
second query, which recourses across the anchor query
- An outer query, which references the routine and specify the number of recursion levels

Example

DECLARE @EmployeeToGetOrgFor INTEGER = 126;

WITH EMP_cte(BusinessEntityID, OrganizationNode, FirstName, LastName,

 JobTitle, RecursionLevel)

AS (SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,

 p.LastName, e.JobTitle, 0

 FROM HumanResources.Employee AS e

 INNER JOIN Person.Person AS p

 ON p.BusinessEntityID = e.BusinessEntityID

 WHERE e.BusinessEntityID = @EmployeeToGetOrgFor

 UNION ALL

 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,

p.LastName, e.JobTitle, RecursionLevel + 1

 FROM HumanResources.Employee AS e

 INNER JOIN EMP_cte

 ON e.OrganizationNode = EMP_cte.OrganizationNode.GetAncestor(1)

 INNER JOIN Person.Person AS p

 ON p.BusinessEntityID = e.BusinessEntityID)

SELECT EMP_cte.RecursionLevel, EMP_cte.BusinessEntityID,

 EMP_cte.FirstName, EMP_cte.LastName,

 EMP_cte.OrganizationNode.ToString() AS OrganizationNode,

 p.FirstName AS 'ManagerFirstName',

p.LastName AS 'ManagerLastName'

FROM EMP_cte

INNER JOIN HumanResources.Employee AS e

 ON EMP_cte.OrganizationNode.GetAncestor(1) = e.OrganizationNode

INNER JOIN Person.Person AS p

 ON p.BusinessEntityID = e.BusinessEntityID

ORDER BY RecursionLevel, EMP_cte.OrganizationNode.ToString()

OPTION(MAXRECURSION 25);

Simon Flüeli

Seite 29 von 54

4.1.2 Caution: Recursion Levels

If the iterative query does not reach the bottom of the hierarchy by the time the MAXRECURSION
values has been exhausted, you receive an error message.

4.1.3 Quick Check

1. What are the two parts of a CTE?
 A CTE has a WITH clause that contains a SELECT statement, which defines a table, along with an
 outer SELECT statement, which references the CTE
2. What are the two parts of a recursive CTE?
 A recursive CTE has an anchor query, which is the source of the recursion, along with a UNION
ALL
 statement and a second query, which recourses across the anchor query; and an outer query,
which
 references the CTE and specifies the maximum recursion levels

4.1.4 Lesson Summary

- A recursive CTE contains two SELECT statements within the WITH clause, separated by the UNION
ALL keyword. The first query defines the anchor for the recursion, and the second query defines the
data set that is to be iterated across
- If a CTE is contained within a batch, all statements preceding the WITH clause must be terminated
with a semicolon
- The outer query references the CTE and specifies the maximum recursion

4.2 Lesson 2: Implementing subqueries

Subqueries allow you to:
- Nest one query within another to build complex routines
- Retrieve data sets that would be impossible to construct without resorting to a multistep process

4.2.1 Noncorrelated Subqueries

- Independent of the outer query within which it is contained
- Allow you to write more dynamic code

Example

SELECT *

FROM Customers.Customer AS a

INNER JOIN Customer.CustomerAdress AS b

 ON a.CustomerID = b.CustomerID

WHERE b.City IN (SELECT c.City FROM Customer.CityRegion AS c

 INNER JOIN Customer.Region AS d

 ON c.RegionID = d.RegionID

 WHERE d.Region = 'RegionX')

Simon Flüeli

Seite 30 von 54

4.2.2 Correlated subqueries

- Depends upon and references columns from the outer query
- The inner query depends upon the values from the outer query

Example

4.2.3 Quick Check

1. What is the difference between a correlated and a noncorrelated subquery?
 A noncorrelated subquery is a query that is embedded within another query but does not

reference any columns from the outer query. A correlated subquery is embedded within
another query and references columns within the outer query

2. What is a derived table?
 A derived table is a SELECT statement that is embedded within a FROM clause

4.2.4 Lesson summary

- Noncorrelated subqueries are independent queries that are embedded within an outer query and
are used to retrieve a scalar value or list of values that can be consumed by the outer query to make
code more dynamic
- Correlated subqueries are queries that are embedded within an outer query but reference values
within the outer query

SELECT a.ProductID, a.ListPrice

FROM Production.Product AS a

WHERE EXISTS(SELECT 1 FROM Sales.SalesOrderDetail AS b

 WHERE b.ProductID = a.ProductID)

Simon Flüeli

Seite 31 von 54

4.3 Lesson 3: Applying ranking functions

- Used to provide simple analytics (statistical ordering / segmentation)

4.3.1 Ranking Data

Ranking function Description

ROW_NUMBER Assigns a number from 1 to n based on a user-specified sorting
order

RANK Assigns the same value to each row that is tied and then skips to
the next value, leaving a gap in the sequence corresponding to the
number of rows that were tied

DENSE_RANK Assigns the same value to each duplicate but does not produce
gaps in the sequence

NTILE Used to divide a result set into approximately equal groups

Example ROW_NUMBER

Example RANK

Example DENSE_RANK

SELECT p.FirstName, p.LastName,

 ROW_NUMBER() OVER (ORDER BY SalesYTD DESC) AS 'RowNumber',

 s.SalesYTD, s.TerritoryID

FROM Sales.SalesPerson AS s

INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

INNER JOIN Person.BusinessEntityAddress AS ba

 ON p.BusinessEntityID = ba.BusinessEntityID

INNER JOIN Person.Address AS a

 ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

RANK() OVER(PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS 'Rank'

FROM Production.ProductInventory AS a

INNER JOIN Production.Product AS b

 ON a.ProductID = b.ProductID

ORDER BY 'Rank'

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

DENSE_RANK() OVER(PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS

'Rank'

FROM Production.ProductInventory AS a

INNER JOIN Production.Product AS b

 ON a.ProductID = b.ProductID

ORDER BY 'Rank'

Simon Flüeli

Seite 32 von 54

Example NTILE

4.3.2 Quick Check

1. What is the difference between RANK and DENSE_RANK?
 RANK assigns the same number to ties but leaves gap in the sequence corresponding
to the number of rows that were tied. DENSE_RANK assigns the same number to ties but
does not create a gap in a sequence

2. When do ROW_NUMBER, RANK, AND DENSE_RANK produce the same results?
 ROW_NUMBER, RANK, and DENSE_RANK produce the same results when the column
being sorted by does not contain any duplicate values within the result set

4.3.3 Lesson summary

- ROW_NUMBER is used to number rows sequentially in a result set but might not produce identical
results if there are ties in the column(s) used for sorting
- RANK numbers a tie with identical values but can produce gaps in a sequence
- DENSE_RANK numbers ties with identical values but does not produce gaps in the sequence
- NTILE allows you to divide a result set into approximately equal-sized groups

4.4 Chapter summary

- Recursive CTEs can be used to solve a variety of problems that require traversal of a hierarchy more
efficiently than cursor-based approaches
- Subqueries allow you to embed one query within another query. A noncorrelated subquery is
independent of the outer query, whereas a correlated subquery references columns in the outer
query
- Ranking functions can be used to solve a variety of problems that require ordering of a result set,
such as pagination and finding gaps within a sequence

SELECT p.FirstName, p.LastName,

 NTILE(4) OVER(ORDER BY s.SalesYTD DESC) AS QuarterGroup,

 s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson AS s

INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

INNER JOIN Person.BusinessEntityAddress AS ba

 ON p.BusinessEntityID = ba.BusinessEntityID

INNER JOIN Person.Address AS a

 ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

Simon Flüeli

Seite 33 von 54

5 Chapter 5 Programming Microsoft SQL Server with T-SQL

User-Defined Stored Procedures, Functions, Triggers, and Views

5.1 Lesson 1 Stored procedures

5.1.1 Creating stored procedures

Almost any command within the T-SQL language can be included in a stored procedure.

The only commands that cannot be used in a stored procedure are the following:

Do NOT use in store procedures

USE <database name>

SET SHOWPLAN_TEXT

SET SHOWPLAN_ALL

SET PARSEONLY

SET SHOWPLAN_XML

CREATE AGGREGATE

CREATE RULE

CREATE DEFAULT

CREATE SCHEMA

CREATE FUNCTION or ALTER FUNCTION

CREATE TRIGGER or ALTER TRIGGER

CREATE PROCEDURE or ALTER PROCEDURE

CREATE VIEW or ALTER VIEW

Syntax

CREATE {PROC | PROCEDURE } [schema_name.]procedure_name [; number]

 [{@parameter [type_schema_name.]data_type }

 [VARYING][= default] [OUT |OUTPUT][READONLY]

][,...n]

[WITH <procedure_option>[,...n]]

[FOR REPLICATION]

AS {<sql_statement> [;][...n] | <method_specifier>}[;]

<procedure_option> ::=

 [ENCRYPTION] [RECOMPILE] [EXECUTE AS CLAUSE]

Simon Flüeli

Seite 34 von 54

5.1.2 Variables, Parameters, and Return Codes

- Objects, that are designed to pass values within your code

Variables
- Way to manipulate, store, and pass data within a stored procedure / between stored procedures
and functions
- Two types of variables: local and global
 - local variable is designated by a single at sign (@)
 - global variable is designated by a double at sign (@@)

Global variables

Global variable Definition

@@ERROR Error code from the last statement executed

@@IDENTITY Value of the last identity value inserted within
the connection

@@ROWCOUNT The number of rows affected by the last
statement

@@TRANCOUNT The number of open transactions within the
connection

@@VERSION The version of SQL Server

Parameters
- Local variables that are used to pass values into a stored procedure
- Two types of parameters: input and output

5.1.3 Controls flow constructs

Stored procedures have several control flow constructs that can be used

Control flow constructs

RETURN

IF…ELSE

BEGIN…END

WHILE

BREAK/CONTINUE

WAITFOR

GOTO

5.1.4 Error Messages

- Three components
 - Error number (number between 1 and 49999)
 - Severity level (number between 0 and 25)
 - Error Message(up to 255 Unicode characters long)
 - Own messages (number higher than 50001)

Simon Flüeli

Seite 35 von 54

5.1.5 Error Handling

The way a TRY…CATCH is implemented
- If an error with a severity less than 20 is encountered within the TRY block, control passes to the
corresponding CATCH block
- If an error is encountered in the CATCH block, the transaction is aborted and the error is returned to
the calling application unless the CATCH block is nested within another TRY block
- The CATCH block must immediately follow the TRY block
- Within the CATCH block, you can commit or roll back the current transaction unless the transaction
is in an uncommitable state
- A RAISERROR executed in the TRY block immediately passes control to the CATCH block without
returning an error message to the application
- A RAISERROR executed in the CATCH block closes the transaction and returns control to the calling
application with the specified error message
- If a RAISEERROR is not executed within the CATCH block, the calling application never receives an
error message

Within the CATCH block, you have access to the following functions

Function Description

ERROR_NUMBER() The error number of the error thrown

ERROR_MESSAGE() The text of the error message

ERROR_SEVERITY() The severity level of the error message

ERROR_STATE() The state of the error

ERROR_PROCEDURE() The function, trigger, or procedure name that was executing when the
error occurred

ERROR_LINE() The line of code within the function, trigger, or procedure that caused
the error

Simon Flüeli

Seite 36 von 54

5.1.6 Cursors

- Used when you need to process data one row at a time
- Allows scrolling forward as well as backward through the result set

Cursor components

Component Description

DECLARE Used to define the SELECT statement that is the
basis for the rows in the cursor

OPEN Causes the SELECT statement to be executed and
load the rows into a memory structure

FETCH Used to retrieve one row at a time from the
cursor

CLOSE Used to close the processing on the cursor

DEALLOCATE Used to remove the cursor and release the
memory structures containing the cursor result
set
(It is not necessary to close and deallocate the
cursors in a procedure)

Syntax

SET-BASED PROCESSING
- Multilevel cursors in stored procedures -> probably replace the cursors with a set-based process

Types of cursors

Type Description

FAST_FORWARD - Fastest performing
- Only move forward one row at a time
- Scrolling not supported
- Same as FORWARD_ONLY, READ_ONLY
- Default option for cursors

STATIC - Retrieved and stored in a temp table
- Fetches go against the temp table and modifications to the underlying
tables for the cursor are not visible
- Supports scrolling
- Modifications are not allowed

KEYSET - Set of keys that uniquely identify each row in the cursor result set is
stored in a temp table
- Non-key columns are retrieved from underlying tables
- Modifications to rows are reflected as the cursor is scrolled
- Inserts into underlying table are not accessible for the cursor

DECLARE cursor_name CURSOR [LOCAL | GLOBAL]

 [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET |DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS |OPTIMISTIC]

 [TYPE_WARNING]

 FOR select_statement

 [FOR UPDATE [OF column_name [,...n]]]

Simon Flüeli

Seite 37 von 54

- If you attempt to access a row that has been deleted,
@@FETCH_STATUS returns -2

DYNAMIC - Most expensive cursor to use
- Reflects all changes made to the underlying result set
- Position and order of rows can change each time a fetch is made
- FETCH ABSOLUTE is not available for dynamic cursor

If a cursor is declared using the SCROLL option, the FETCH statement has several options

Fetch options Description

FETCH FIRST Fetches the first row in the result set

FETCH LAST Fetches the last row in the result set

FETCH NEXT Fetches the next row in the result set

FETCH PRIOR Fetches the row in the result set just before the current position of the
cursor pointer

FETCH ABSOLUTE n Fetches the nth row from the beginning of the result set

FETCH RELATIVE n Fetches the nth row forward in the cursor result set from the current
position of the cursor pointer

READ_ONLY Cursor cannot be updated

SCROLLS_LOCKS A lock is acquired as each row is read into the cursor, guaranteeing that
any transaction executed against the cursor succeeds

OPTIMISTIC Lock is not acquired. SQL Server uses either a timestamp or a calculated
checksum in the event that a timestamp column does not exist to detect
if the data has changed since being read into the cursor. If the data has
changed, the modification fails

5.1.7 Quick Check

1. What are the four types of cursors that you can create?
 The four types of cursers that can be created are FAST_FORWARD, STATIC, KEYSET, and

DYNAMIC
2. How does XACT_ABORT behave within a TRY block?

If XACT_ABORT is set within a TRY block, when an error is thrown, control passes to the
CATCH block. However, the transaction is doomed and cannot be committed within the
CATCH block.

Simon Flüeli

Seite 38 von 54

5.1.8 Lesson summary

- A stored procedure is a batch of T-SQL code that is given a name and is stored within a database
- You can pass parameters to a stored procedure either by name or by position. You can also return
data from a stored procedure using output parameters
 - You can use the EXECUTE AS clause to cause a stored procedure to execute under a specific
security context
- Cursors allow you to process data on a row by row basis; however, if you are making the same
modification to every row within a cursor, a set-oriented approach is more efficient
- A TRY…CATCH block delivers structured error handling to your procedure

5.2 Lesson 2: User-Defined Functions

- Programmable objects, used to perform calculations
- Can access data and return results
- Cannot make any modifications

5.2.1 System functions

Function category Description

Aggregate Combine multiple values (SUM, AVG, COUNT)

Configuration Return system configuration information (@@VERSION, @@LANGUAGE,
@@SERVERNAME)

Cryptographic Support encryption and decryption

Cursor Return state information about a cursor (@@FETCH_STATUS,
@@CURSOR_ROWS)

Date and time Return portions of a date/time or calculate dates and times (DATEADD,
DATEPART, DATEDIFF, GETDATE)

Management Return information to manage portions of SQL Server
(sys.dm_db_index_physical_stats)

Mathematical Perform mathematical operations (SIN, COS, TAN, LOG, PI, ROUND)

Metadata Return information about database objects (OBJECT_NAME, OBJECT_ID,
DATABASEPROBERTYEX, DB_NAME)

Ranking Return values used in ranking result sets

Rowset Return a result set that can be joined to other tables (CONTAINS,
FREETEXT)

Security Return security information about users and roles (SUSER_SNAME,
Has_perms_by_name, USER_NAME)

String Manipulate CHAR and VARCHAR data (POS, CHARINDEX, SOUNDEX,
REPLACE, STUFF, RTRIM)

System Return information about a variety of system, database, and object
settings as well as data (DATALENGTH, HOST_NAME, ISDATE, ISNULL,
SCOPE_IDENTITY, CAST, CONVERT)

System statistics Return operational information about a SQL Server instance
(fn_virtualfilestats, @@CONNECTIONS)

Text and image Manipulate text and image data (TEXTPTR, TEXTVALID)
(Text and image data types have been deprecated and you should not use
either of these functions in applications)

5.2.2 User-defined functions

- Perform an action that changes the state of an instance or database

Simon Flüeli

Seite 39 von 54

- Modify data in a table
- Call a function that has an external effect, such as the RAND function
- Create or access temporary tables
- Execute code dynamically

Syntax

5.2.3 Schemabinding

The SCHEMABINDING option is applied to ensure that you can’t drop dependent objects. For
example, if you were to create a function that performed a SELECT against the
Sales.SalesOrderHeader table did not exist. To prevent objects that a programmable object relies on
from being dropped or altered, you specify the SCHEMABINDING option. If you attempt to drop or
modify the dependent object, SQL Server prevents the change. To drop or alter a dependent object,
you first have to drop the programmable object that depends on the object you want to drop or
alter.

5.2.4 Retrieving data from a function

- Retrieve data from a function by using a SELECT statement
- Functions can be used in
 - A SELECT list
 - A WHERE clause
 - An expression
 - A CHECK or DEFAULT constraint
 - A FROM clause with the CROSS/OUTER APPLY function

Best Practices: Avoid using Functions in the WHERE clause

5.2.5 Quick Check

1. What are the three types of functions that you can create?
You can create a scalar function, which returns a single value, an inline table-valued function,
which contains a single SELECT statement and is treated the same as a view, and a multi-
statement table-valued function, which returns a table

2. What are the required elements of a function?
 Every function ends with a RETURN statement. Scalar functions include the value to be
returned immediately following the RETURN statement. Inline table-valued functions include the
SELECT statement for the result set to return immediately following the RETURN statement. Multi-
statement table-valued functions just terminate with a RETURN. With the exception of inline table-
valued functions, the entire function body is required to be enclosed in a BEGIN…END block

CREATE FUNCTION [schema_name.]function_name

([{@parameter_name [AS] [type_schema_name.]parameter_data_type

 [= default][READONLY]} [,...n]])

RETURNS return_data_type

 [WITH <function_option> [,...n]]

 [AS]

 BEGIN

 <function_body>

 RETURN scalar_expression

 END

Simon Flüeli

Seite 40 von 54

Simon Flüeli

Seite 41 von 54

5.2.6 Lesson summary

- You can create scalar functions, inline table-valued functions, and multi-statement table-valued
functions
- With the exception of inline table-valued functions, the function body must be enclosed within a
BEGIN…END block
- All functions must terminate with a RETURN statement
- Functions are not allowed to change the state of a database or of a SQL Server instance

5.3 Lesson 3: Triggers

- Special type of stored procedure
- Automatically execute when a DML or DDL statement is executed

5.3.1 DML Triggers

- Created on a table or a view
- Defined for a specific event (INSERT, UPDATE, or DELETE)
- Have access to the inserted and deleted tables

Syntax

 - Regardless of the number of rows that are affected, a trigger fires only once for an action

5.3.2 DDL Triggers

- Executes either when a DDL statement is executed or when the user logs on to the SQL Server
instance
- Has access to the EVENTDATA function

Syntax

CREATE TRIGGER [schema_name.]trigger_name

ON {table | view}

[WITH <dml_trigger_option>[,...n]]

{FOR | AFTER | INSTEAD OF}

{[INSERT] [,] [UPDATE] [,] [DELETE]}

[WITH APPEND]

[NOT FOR REPLICATION]

AS {sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;]>}

CREATE TRIGGER trigger_name

ON {ALL SERVER | DATABASE }

[WITH <ddl_trigger_option> [,...n]]

{FOR | AFTER} {event_type | event_group} [,...n]

AS {sql_statement [;] [,...n] | EXTERNAL NAME <method specifier>[;]}

<ddl_trigger_option> ::=

 [ENCRYPTION] [EXECUTE AS Clause]

<method_specifier> ::=

 assembly_name.class_name.method_name

Simon Flüeli

Seite 42 von 54

DDL Trigger Event Types

DDL Command Event Type

CREATE DATABASE CREATE_DATABASE

DROP LOGIN DROP_LOGIN

UPDATE STATISTICS UPDATE_STATISTICS

DROP TRIGGER DROP_TRIGGER

ALTER TABLE ALTER_TABLE

EVENTDATA Function
- Returns the following XML document

- Can be queried by using the value() method

Example

Simon Flüeli

Seite 43 von 54

5.3.3 Logon Triggers

- Fire at logon to the SQL Server instance
- After authentication succeeds
- Before the user session is actually established

- It is not possible to return any messages to a user
- Used to audit and restrict access

Syntax

Quick Check
1. What are the three types of triggers that can be created?
 You can create DML, DDL, and logon triggers
2. You query the XML document returned by the EVENTDATA function within DDL and logon

triggers to retrieve information about the event that caused the trigger to fire. Each event
has a different XML schema

5.3.4 Lesson summary

- Triggers are specialized stored procedures that automatically execute in response to a DDL or DML
event
- You can create three types of trigger: DML, DDL, and logon triggers
 - A DML trigger executes when an INSERT, UPDATE, or DELETE statement for which the trigger is
coded occurs
- A DDL trigger executes when a DDL statement for which the trigger is coded occurs
- A logon trigger executes when there is a logon attempt
- You can access the inserted and deleted tables within a DML trigger
- You can access the XML document provided by the EVENTDATA function within a DDL or logon
trigger

CREATE TRIGGER trigger_name

ON ALL SERVER

[WITH <logon_trigger_option>[,...n]]

{FOR | AFTER} LOGON

AS {sql_statement [;] [,...n] | EXTERNAL NAME <method specifier> [;]}

<logon_trigger_option> ::= [ENCRYPTION] [EXECUTE AS Clause]

Simon Flüeli

Seite 44 von 54

5.4 Lesson 4 Views

5.4.1 Creating a view

- SELECT statement that has been given a name and is stored in a database

Syntax

- Select statement in a view cannot do any of the following

- Contain the COMPUTE or COMPUTE BY clause
- Create a permanent or temporary table by using the INTO keyword
- Use an OPTION clause
- Reference a temporary table
- Reference any type of variable
- Contain an ORDER BY clause unless a TOP operator is also specified

5.4.2 Modifying data through a view

- Following requirements have to be met
 - The data modification must reference exactly one table
 - Columns in the view must reference columns in a table directly
 - The column cannot be derived from an aggregate

- The column cannot be computed as the result of a UNION / UNION ALL, CROSSJOIN,
EXCEPT, or INTERSECT

 - The column being modified cannot be affected by the DISTINCT, GROUP BY, or HAVING clause
 - The TOP operator is not used

5.4.3 Partitioned Views

- Split large tables across multiple storage structures
- Bring all the data back together using a view
- Implements a UNION ALL of all member tables with the same structure

Conditions
- All columns of the member tables should be contained in the select list of the view
- Columns in the same ordinal position of each SELECT statement need to be of exactly the same data
type and collation
- At least one column that corresponds to a CHECK constraint, unique to each member table, should
be in the same ordinal position of each SELECT statement
- The constraints must form unique, non-overlapping data sets in each member table
- The same column cannot be used multiple times in the select list
- The partitioning column, defined by the CHECK constraint, must be part of the primary key
- The partitioning column cannot be computed, be a timestamp data type, have a DEFAULT
constraint, or be an identity column
- The same member table cannot appear twice within the view definition
- Member tables cannot have indexes on computed columns
- The primary key of each table must have the same number of columns for each member table
- All member tables must have the same ANSI_PADDING setting

CREATE VIEW [schema_name.]view_name [(column [,...n])]

[WITH <view_attribute> [,...]]

AS select_statement

[WITH CHECK OPTION][;]

Simon Flüeli

Seite 45 von 54

Split member tables of a partitioned view across SQL Server instances -> distributed partitioned view

5.4.4 Creating an Indexed View

- Can improve performance
- Data is already materialized
- Data does not have to be calculated on the fly

Requirements
- The SELECT statement cannot reference other views
- All functions must be deterministic
- AVG, MIN, MAX, STDEV, STDEVP, VAR, and VARP are not allowed
- The index created must be both clustered and unique
- ANSI_NULLS must have been set to ON when the view and any tables referenced by the view were
created
- The view must be created with the SCHEMABINDING option
- The SELECT statement must not contain subqueries, outer joins, EXCEPT, INTERSECT, TOP, UNION,
ORDER BY, DISTINCT, COMPUTE/COMPUTE BY, CROSS/OUTER APPLY, PIVOR, or UNPIVOT

5.4.5 Determinism

- Determinism
 - Function that returns the same value every time it is called, given the same input parameters
 - SUBSTRING

- Nondeterministic
 - Function that could return a different value each time it is called, given the same input params
 - RAND, GETDATE

5.4.6 Query substitution

- When a nonmaterialized view is referenced, SQL Server replaces the name of the view with the
actual SELECT statement defined by the view, rewrites the query as if you had not reference the view
at all, and then submits the rewritten query to the optimizer
- When an index is created against a view, the data is materialized
- Queries that reference the indexed view do not substitute the definition of the view but instead
return the results directly from the indexed view

5.4.7 Quick check

1. What types of views can be created?
 You can create a regular view that is just a stored SELECT statement. You can also create a
 partitioned view that uses the UNION AL keywords to combine multiple member tables
2. What types of indexes can be created on a view?
 You can index a view by creating a unique, clustered index

Simon Flüeli

Seite 46 von 54

5.4.8 Lesson summary

- A view is a name for a SELECT statement stored within a database
- A view has to return a single result set and cannot reference variables or temporary tables
- You can update data through a view so long as the data modification can be resolved to a specific
set of rows in an underlying table
- If a view does not meet the requirements for allowing data modifications, you can create an
INSTEAD OF trigger to process the data modification instead
- You can combine multiple tables that have been physically partitioned using a UNION ALL
statement to create a partitioned view
- A distributed partitioned view uses linked servers to combine multiple member tables across SQL
Server instances
- You can create a unique, clustered index on a view to materialize the result set for improved query
performance

5.5 Chapter Summary

- SQL Server allows you to create four programmable objects: functions, stored procedures, triggers,
and views
- Functions can return a scalar value or a result set but are not allowed to change the state of a
database or SQL Server instance
- Stored procedures provide a programming API that abstracts the database structure from
applications
- A stored procedure can contain almost any command within the T-SQL language
- Triggers are created for tables and views and automatically execute in response to an INSERT,
UPDATE, or DELETE
- Views allow you to assign a name to a SELECT statement that produces a single result set and that is
stored within a database

Simon Flüeli

Seite 47 von 54

6 Chapter 6 Techniques to Improve Query Performance

6.1 Lesson 1 Tuning Queries

6.1.1 Evaluating Query Performance

- Three main metrics to consider
 - Query cost
 - Page reads
 - Query execution time

Query Cost
- Takes into account CPU and input/output (I/O) resources

Page reads
- Number of 8-kilobyte data pages accessed by the SQL Server storage engine while executing a query
- SET STATISTICS IO ON
- Logical reads: Number of pages read from memory
- Scan count: Number of passes though an index or heap it took to respond to the query
- LOB: How many page reads were used to retrieve Large Object (LOB) data

Query execution time
- Affected by blocking (locks) as well as resource contention on the server
- SET STATISTICS TIME ON

Examining the Theoretical Query Execution Order

Theoretical Execution Order – Excluding the UNION Clause

Clauses Results

1. FROM, JOIN, APPLY, and ON The join is executed and the first query filter (the
ON clause) is applied

2. WHERE The second query filter is applied

3. GROUP BY and aggregate functions (such as
 SUM, AVG, and so on) that are included in
 the query

Grouping and aggregation calculations are
performed

4. HAVING The third query filter (filtering of the results of
aggregate functions) is applied

5. SELECT Columns that should be returned by the query
are selected

6. ORDER BY Results are sorted

7. TOP The fourth (and last) query filter is applied; this
causes the query to return only the first X rows
from the results thus far

8. FOR XML The tabular result returned by the SELECT
statement is converted to Extensible Markup
Language (XML)

Simon Flüeli

Seite 48 von 54

Theoretical Execution Order – Including the UNION Clause

Clauses Results

1. FROM, JOIN, APPLY, and ON The join is executed and the first query filter (the
ON clause) is applied

2. WHERE The second query filter is applied

3. GROUP BY and aggregate functions (such as
 SUM, AVG, and so on) that are included in
 the query

Grouping and aggregation calculations are
performed

4. HAVING The third query filter (filtering of the results of
aggregate functions) is applied

5. TOP The fourth (and last) query filter is applied; this
causes the query to return only the first X rows
from the results thus far

6. UNION and SELECT The results of each SELECT statement included in
the query are concatenated; columns that should
be returned by the query are selected

7. ORDER BY Results are sorted

8. FOR XML The tabular result returned by the SELECT with
UNION statement is converted to XML

6.1.2 Tuning Query Performance

- Rewriting the query
- De-normalizing tables
- Adding indexes
- Removing indexes

Simon Flüeli

Seite 49 von 54

6.1.3 The Graphical execution Plan

6.1.4 Using Search Arguments

- Search argument (SARG)
 - Filter expression that is used to limit the number of rows returned by a query and that can
 use an index seek operation that substantially improves the performance of the query

6.1.5 Lesson Summary

- Understanding how queries are logically constructed is important to knowing that they correctly
return the intended result
- Understanding how queries are logically constructed helps you understand what physical constructs
(like indexes) help the query execute faster
- Make sure you understand your metrics when you measure performance

Simon Flüeli

Seite 50 von 54

6.2 Lesson 2: Creating Indexes

Two types of indexes
 - clustered indexes
 - Is the actual table; that is, the bottom level of a clustered index contains the actual
 rows, including all columns, of the table
 - Always cover queries
 - nonclustered indexes
 - Contains only the columns included in the index’s key, plus a pointer pointing to the
 actual data row

Table without clustered index -> heap (unsorted)
Table with clustered index -> sorted

6.2.1 Improving performance with covered indexes

- A covered index always performs better than a noncovered index
- For queries that return a very limited number of rows, a noncovered index also performs very well
- For the somewhat-selective query, the noncovered index reads more than 34 times more pages
than the covered index. In this case, a query was considered selective by the optimizer when it
matched less than roughly 0.77 percent of the table

6.2.2 Using included columns and reducing index depth

- Included columns cannot be used for tasks such as filtering or sorting
- Sole benefit is reducing page reads through covering queries by avoiding table lookups

- Only columns that are used for filtering, grouping, or sorting should be part of the index key
- All other columns -> included columns

- Retrieve information from the sys.dm_db_index_physical_stats

6.2.3 Using clustered indexes

- Reading from the clustered index never results in lookups
- Clustered index
 - Generally be defined on columns that are often queried and return a lot of data
 - Avoids the problem of lookups and fetching a large number of rows

SELECT *

FROM sys.dm_db_index_physical_stats(

 DB_ID(),

 OBJECT_ID('Test.IncludedColumnsTest'),

 NULL,

 NULL,

 'DETAILED')

AS a

Simon Flüeli

Seite 51 von 54

6.2.4 Read performance vs. Write performance

- Index only helps boost the read performance
- Write performance is typically degraded
- 5 nonclustered indexes on a table -> 6 inserts (1 table, 5 indexes)
 - Same with delete statements

- Not the same with update statements (only indexes that contain the columns that are
updated)

6.2.5 Using indexed views

- Create indexes on a view
- Extensive requirements to create indexes on views
- View with indexes -> View is materialized -> still a view but it stores data found in the view
- Can greatly improve the read performance of queries

6.2.6 Partitioning

Partition Functions
- CREATE PARTITION FUNCTION
- LEFT / RIGHT

Example LEFT

Partitions available with the PF partition function

Partition number Partition range

1 <= 10

2 > 10 AND <= 20

3 > 20 AND <= 30

4 > 30

Example RIGHT

Partitions available with the PF partition function

Partition number Partition range

1 < 10

2 >= 10 AND < 20

3 >= 20 AND < 30

4 >= 30

CREATE PARTITION FUNCTION PF(INT)

AS RANGE LEFT

FOR VALUES (10, 20, 30)

CREATE PARTITION FUNCTION PF(INT)

AS RANGE RIGHT

FOR VALUES (10, 20, 30)

Simon Flüeli

Seite 52 von 54

Partition Schemes
- CREATE PARTITION SCHEME
- Map between partitions for a particular partition and file groups
- Store different parts of a table on different types of storage devices

Example

Example partitioning

CREATE PARTITION SCHEME PS

AS PARTITION PF TO (FG1, FG2, FG1, FG2)

Simon Flüeli

Seite 53 von 54

6.2.7 Tuning indexes automatically

- Graphical execution plan -> note, which lets you retrieve the script needed to create the missing
index
- sys.dm_db_missing_index_details
- sys.dm_db_missing_index_groups
- sys.dm_db_missing_index_group_stats

6.2.8 Lesson summary

- Indexes typically help read performance but can hurt write performance
- Indexed views can increase performance even more than indexes, but they are restrictive and
typically cannot be created for the entire query
- Deciding which columns to put in the index key and which should be implemented as included
columns is important
- Analyze which indexes are actually being used and drop the ones that aren’t. This saves storage
space and minimizes the resources used to maintain indexes for write operations

6.3 Chapter summary

- Always evaluate different ways of implementing costly queries
- Because indexes take up space (if not disabled) and are maintained for write operations, try to drop
unused indexes
- When measuring query performance, always include the query execution time as a metric; don’t
just rely on cost and page reads
- Create covered indexes for the most frequently executed queries
- Evaluate creating indexed views to cover entire queries or parts of queries

Simon Flüeli

Seite 54 von 54

7 Chapter 7 Extending Microsoft SQL Server Functionality with XML,

SQLCLR, and Filestream

7.1 Lesson 1 Working with XML

- Retrieving relational data as XML
 Instead of retrieving a tabular result set from the database, you retrieve an XML document
- Passing data as XML to the database
 Instead of passing scalar values to the database by issuing multiple data manipulation language
 (DML) statements or running a stored procedure multiple times, an XML document or fragment can
 be passed directly to the database
- Storing and querying an actual XML document or fragment in the database
 This is one of the more controversial topics. Why would you store XML directly in a table?

7.2 Retrieving tabular data as XML

- At the end of the SELECT statement: FOR XML <mode>
- Modes: RAW, AURO, EXPLICIT, and PATH
- Recommended and most powerful mode: PATH

7.3 FOR XML RAW

Example

SELECT c.CustomerID,

 c.AccountNumber

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2)

FOR XML RAW

SELECT c.CustomerID,

 c.AccountNumber

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2)

FOR XML RAW('Customer'), ROOT('Customers')

<row CustomerID="1" AccountNumber="AW000000001" />

<row CustomerID="2" AccountNumber="AW000000002" />

<Customers>

 <Customer Id="1" AccountNumber="AW000000001" />

 <Customer Id="2" AccountNumber="AW000000002" />

</Customers>

